Metabotropic glutamate receptors increase amyloid precursor protein processing in astrocytes: inhibition by cyclic AMP.

نویسندگان

  • R K Lee
  • R J Wurtman
چکیده

Neurotransmitter receptors that increase phosphatidylinositol hydrolysis generate second messengers that activate protein kinase C. Here, we used metabotropic glutamate receptor agonists to increase both phosphatidylinositol hydrolysis and secretion of the soluble extracellular fragment of amyloid precursor protein (APPs) from cortical astrocyte cultures. The increase in APPs secretion was mimicked by direct activation of protein kinase C with phorbol ester and was suppressed by the metabotropic glutamate receptor antagonist L-(+)-2-amino-3-phosphonopropionic acid or by the protein kinase C inhibitor GF109203X. Ionotropic glutamate agonists did not increase APPs secretion. Forskolin or dibutyryl cyclic AMP inhibited the increase in APPs secretion caused by metabotropic glutamate receptor agonists or by phorbol ester treatment but did not affect basal APPs levels. Therefore, glutamatergic agonists that increase protein kinase C activation or decrease cyclic AMP formation may enhance the conversion of full-length APP to nonamyloidogenic APPs in Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabotropic glutamate receptor agonists increase release of soluble amyloid precursor protein derivatives from rat brain cortical and hippocampal slices.

The proteolytic processing of the beta-amyloid precursor protein (APP) is regulated by neurotransmitters. Stimulation of metabotropic glutamate receptors (mGluRs) has been shown to increase the release of soluble amyloid precursor protein derivatives (APPs) from cultured cells. We examined the effects of mGluR agonists on APP processing in cortical and hippocampal slices from rat brain. Incubat...

متن کامل

Glutamate-stimulated, guanine nucleotide-mediated phosphoinositide turnover in astrocytes is inhibited by cyclic AMP.

The potential for cross-talk between the adenyl cyclase and phosphoinositide (PPI) lipid second messenger system was investigated in astrocytes cultured from neonatal rat brain. Glutamate-stimulated PPI turnover, measured by the formation of total inositol phosphates from myo-[3H]inositol-labeled lipids, was inhibited in a concentration-dependent manner by the elevation of intracellular cyclic ...

متن کامل

Pii: S0306-4522(99)00381-4

Glutamate is the principal excitatory neurotransmitter in the mammalian brain. Several lines of evidence suggest that glutamatergic hypoactivity exists in the Alzheimer’s disease brain, where it may contribute to both brain amyloid burden and cognitive dysfunction. Although metabotropic glutamate receptors have been shown to alter cleavage of the amyloid precursor protein, little attention has ...

متن کامل

Metabotropic glutamate receptors inhibit microglial glutamate release

Pro-inflammatory stimuli evoke an export of glutamate from microglia that is sufficient to contribute to excitotoxicity in neighbouring neurons. Since microglia also express various glutamate receptors themselves, we were interested in the potential feedback of glutamate on this system. Several agonists of mGluRs (metabotropic glutamate receptors) were applied to primary rat microglia, and the ...

متن کامل

Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons.

The amyloid precursor protein (APP) can be cleaved by a beta-secretase to generate a beta-amyloid peptide, which has been implicated in the pathogenesis of Alzheimer's disease. However, APP can also be cleaved by an alpha-secretase to form a non-amyloidogenic secreted form of APP (APP-S). APP-S secretion can be physiologically regulated. This study examined the glutamatergic regulation of APP i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 68 5  شماره 

صفحات  -

تاریخ انتشار 1997